

SMART SOLUTIONS FOR A WARMING PLANET: THE ROLE OF AI IN TACKLING CLIMATE AND ENVIRONMENTAL CRISES

Anisha Chaurasia

PhD Research Scholar, Department of Political Science & Public Administration,
School of Humanities and Liberal Arts, NIMS University, Rajasthan

Bikasdev Chhura

Assistant Professor & Head, Department of Political Science & Public Administration,
School of Humanities and Liberal Arts, NIMS University, Rajasthan

Jyoti

PhD Research Scholar, Department of Political Science & Public Administration,
School of Humanities and Liberal Arts, NIMS University, Rajasthan

ABSTRACT

As the global climate emergency is escalating, the need for novel and adaptive, evidence-based solutions to lessen detrimental impacts on our environment, and build climate resilience is more pressing than ever before. Artificial Intelligence (AI) is being seen as an active player to reshape the way we identify, monitor, and act on environmental challenges. This paper investigates the different ways AI can help us respond to the climate and ecological crisis, focusing on specific applications of AI in several prominent sectors, including agriculture, air and water quality, disaster forecasting and preparedness, renewable energy, and biodiversity protection and conservation.

Using a qualitative approach primarily based on secondary data from global reports, peer-reviewed literature, and international agency databases, this study further analyzes some real-world case studies to highlight how AI is being used in practice for improved environmental sustainability. Example case studies considered included: Google's AI-based flood forecast system for India, Microsoft's AI-based smart farming projects, Global Forest Watch tracking global deforestation using machine learning, etc. These case study examples illustrate how AI can better predictions, make better use of resources and help to make timely decisions for managing environmental systems.

While the findings from this analysis show that AI can add considerably to climate adaptation and mitigation strategies, it is fundamentally important that equitable access to data and/or data collection, ethical processes, and cooperative policy frameworks are in place involving local capabilities. It is important to deal with other problems like algorithmic biases, resource use in processing (energy intensive), and access inequities in marginalized, developing contexts so that the use of AI is responsible and sustainable. The study ends by calling for better coordination from across stakeholder categories, including governments, technology companies, and environmental organizations towards developing an approach for responsible AI. It further recommends improving the open data infrastructure, embedding AI in climate governance, and an assurance that technology continues to keep up with aims of environmental justice.

Keywords: Artificial Intelligence, Climate Change, Environmental Sustainability, Case Studies, Secondary Data, Smart Technologies, Green Innovation, Climate Governance

1. INTRODUCTION

The 21st century has brought about an alarming acceleration of environmental degradation, which has solely been increasingly irrationally justified by human activity and escalating industrialization. Global warming and rising sea levels have become triggered by extreme weather and elevated pollution, deforestation, and water pollution and scarcity have imposed immediate global threats to our natural ecosystems and economic and human systems and life. Global temperature has already increased by over 1.1°C since pre-industrial times, with implications for ecosystems and livelihoods (IPCC, 2023).

During this time, AI has emerged and is an unprecedented transformational force that advances environmental sustainability and climate action. Artificial Intelligence (AI) is computer systems that exhibit human (intelligent) behaviours by means of their ability to learn and reason and use their ability to learn and make decisions based on their learning. AI's analytical power is significant because AI aggregates big data from several sources and processes it through their pattern recognition capabilities and modelling based on predictive analytics that allow forecasting climate patterns and optimizing energy use and biodiversity and sustainable agricultural support (Vinuesa et al., 2020). AI can establish real-time tracking systems that can respond to threats of deforestation and illegal land use with the use of satellites with sensors using imaging (WRI, 2022).

Considering the urgency of the environmental crisis and the increasing access to climate-relevant datasets, it is imperative to investigate how AI technologies are harnessed around the world to address these issues. This paper draws on secondary data from reputable sources - including global reports, scientific literature, and institutional databases - to investigate the actual use of AI in environmental governance. This study also analyses selected case studies that provide case-based insights into how AI-based interventions are operating in practice.

1.1 Objectives of the Study

- This study aims to investigate artificial intelligence for solving climate and environmental problems.
- The study evaluates artificial intelligence applications in agricultural and energy sectors together with pollution control and disaster management operations.
- The research investigates obstacles and ethical dilemmas together with deployment constraints of artificial intelligence.
- The research develops policy-level recommendations which focus on using AI in an inclusive and responsible way.

1.2 Research Questions

1. What applications of Artificial Intelligence exist for climate and environmental governance?
2. Which sectors experience the greatest changes from AI-driven environmental innovations?
3. What are the challenges, ethical concerns, and opportunities in integrating AI into climate action?

2. METHODOLOGY

This research uses a descriptive and analytical research framework and relies on secondary data sources. It follows a case-based approach on how Artificial Intelligence (AI) is being used to mitigate climate change or environmental issues.

2.1 Type of Research

The research is qualitative in nature with a focus on:

- Descriptive analysis to map how AI is being used in various environmental sectors.
- Analytical interpretation of the AI case applications, impacts, and limitations.

2.2 Data Sources

Data were collected from credible and a wide variety of secondary sources, including:

- **International Reports:**

From organizations including the Intergovernmental Panel on Climate Change (IPCC), United Nations Environment Programme (UNEP), World Resources Institute (WRI) and World Bank.

- **Peer-Reviewed Research Articles:**

Indexed in Scopus, Web of Science and Google Scholar, from the period between 2015-2024.

Public and Institutional Databases of actual AI applications including:

Featuring real-world AI applications, such as:

- Google AI for Environment
- ClimateAI
- IBM Green Horizon Project
- Microsoft AI for Earth
- Global Forest Watch

Data reliability, relevance, and completeness were assessed for each source.

2.3 Research Approach

The rationale to research was completed via the following procedural steps:

Step 1: Literature Review and Thematic Framing

- A systematic review of the literature provided a review of various common themes, including climate forecasting, sustainable agriculture, pollution mitigations, and renewable energy.
- These common themes guided the selection of the cases for review, and framed the thematic discussions.

Step 2: Data Collection and Organization

- Primary and secondary data collected, and provided below were deemed significant or useful, and categorized against the themes developed in step 1.

- To assist with organizing the key facts, data, statistics or technology, potential table layouts were developed and adopted at the case study sector level (e.g., Agriculture, Air Quality, Energy).

Step 3: Case Study Selection

- **3 to 5 case studies** were selected based on the following criteria:
 - Geographic representation (Global South and Global North)
 - Sector of application (agriculture, disaster prediction, pollution, energy)
 - Availability of publicly accessible data
 - degree of innovation and policy relevance

Step 4: Thematic Analysis

- Each of the case studies was thematically analyzed and accounted for by documenting the following:
 - **Problem being addressed**
 - **AI tool or platform being used**
 - **Stakeholder participation and interaction**
 - **Issues or difficulties faced**

5: Comparative Assessment

- Case studies were compared and contrasted to investigate the differences in sectors, similarities in success factors and local barriers to success.
- Patterns and gaps were recognized and used for the discussion in the results and suggest policy sections.

Step 6: Ethical and Sustainability Considerations

- The socio-ethical aspects of AI use cases (such as data access equity and outcome fairness and energy consumption) received proper consideration.

3. AI APPLICATIONS ACROSS ENVIRONMENTAL SECTORS

AI Applications Across Environmental Sectors Artificial intelligence enables environmental solutions through increased efficiency combined with speed and enhanced sustainability. The following section discusses essential applications of artificial intelligence that support climate governance along with ecosystem monitoring and energy transformation through practical examples and current data.

3.1 AI in Climate Prediction and Early Warning Systems

AI has revolutionized climate prediction and early warning systems through its implementation of machine learning together with deep learning algorithms. These tools process large volumes of satellite and meteorological data to detect patterns in temperature, precipitation, and flood potential. More than 360 million people in India now receive early alerts through Google's AI-based flood forecasting system which operates in disaster-prone areas. The system works with the Central Water Commission to combine hydrological modelling with real-time river level data for issuing alerts through smartphone notifications and local authority communication channels (Google AI, 2023). The Green Horizon project

developed by IBM uses AI technology to predict pollution levels and carbon emissions across Chinese cities. The system uses historical data, weather patterns, and emissions sources to recommend policy actions, such as reducing traffic or modifying factory operations during high-risk periods (IBM, 2022).

3.2 AI in Agriculture and Food Security

Agriculture is a climate-sensitive sector, and AI is being harnessed to enhance resilience, improve yield, and reduce input waste. Through predictive modelling, AI enables **precision farming**, real-time weather analysis, pest monitoring, and **smart irrigation** systems. In India, the **Microsoft AI Sowing App** helped farmers in Andhra Pradesh decide optimal sowing dates by analysing historic climate data, soil moisture, and local weather forecasts. Initial trials showed a 10–30% increase in crop yields among participating farmers (Microsoft India, 2018).

The FAO employs AI technology together with satellite data to forecast agricultural production levels and track drought situations in African and South Asian areas which enables governments to detect food insecurity before occurrence. Through the analysis of vegetation stress patterns and rainfall inconsistencies AI models enhance both food aid distribution strategies and agricultural development planning (FAO, 2021).

3.3 AI in Air and Water Quality Monitoring

Urban air and water quality monitoring is one of the most critical environmental priorities, especially in highly polluted cities. AI enhances **predictive pollution modelling** by combining ground sensor data with meteorological inputs. In cities like **Delhi, Beijing, and London**, AI algorithms are now used to forecast air quality up to 72 hours in advance. The tools have improved forecasting accuracy between 80 and 90 percent in Delhi thus enabling better public health responses and vehicle traffic control (CPCB, 2023).

AI-powered drones and sensors detect algal blooms and oil spills and contamination in rivers and lakes through their applications in water ecosystems. A number of freshwater bodies across the United States use machine learning technology to analyse real-time aerial images which the National Oceanic and Atmospheric Administration (NOAA) operates (NOAA, 2022).

3.4 AI in Renewable Energy Optimization

The energy sector has sped up its transition to sustainable power systems through the use of artificial intelligence. AI systems perform three key functions including predicting power usage levels and controlling distributed grids and optimizing solar and wind power production. DeepMind by Google uses machine learning methods to forecast wind energy production results at 36 hours before the actual time. The wind energy market value increased by 20 percent because of this technology (DeepMind, 2019).

AI technology helps determine optimal solar panel positions and tracks energy waste while handling electric vehicle power consumption across electrical grids. The International Renewable Energy Agency (IRENA) stated that AI tools become more vital for smart grid development and energy optimization throughout the world during 2020 (IRENA, 2020).

3.5 AI for Biodiversity and Deforestation Monitoring

The preservation of natural habitats relies heavily on artificial intelligence systems which serve as protection against environmental deterioration and unauthorized resource exploitation. Artificial Intelligence uses remote sensing along with pattern recognition to

track forest cover and monitor wildlife populations and recognize illegal logging and poaching activities. Open-source platform Global Forest Watch uses satellite imaging and AI technology to observe deforestation events in near real-time. The platform tracked more than 11.1 million hectares of worldwide tree cover disappearance during 2022 which helped conservation groups react more swiftly (GFW, 2023). Rainforest Connection uses solar-powered acoustic sensors to detect chainsaw and gunshot sounds through its rainforest installations. AI processes the audio signals instantly to identify threats so local forest rangers receive immediate alerts. The deployment of this system occurs in Brazil, Peru and Indonesia where it demonstrates increasing success in decreasing forest criminal activities (RFCx, 2022).

Table: Comparative Case Table: AI Applications in Environmental Sectors

Sector	Case Example	AI Technology Used	Location	Key Outcomes	Key Organization(s)
Climate Prediction & Early Warning	Google Flood Forecasting	Machine learning, hydrological modeling	India, Bangladesh	Reached 360M+ people with real-time flood alerts	Google AI, Central Water Commission
Climate Prediction & Early Warning	IBM Green Horizon	Deep learning, big data analytics	China	Urban pollution forecasting and emission control strategies	IBM
Agriculture & Food Security	Microsoft AI Sowing App	Predictive analytics, weather data modeling	India (Andhra Pradesh)	10–30% crop yield improvement	Microsoft, ICRISAT
Agriculture & Food Security	FAO Crop Monitoring	AI + satellite imagery	Global (Africa, Asia)	Early drought and food insecurity detection	FAO
Air & Water Quality Monitoring	Delhi Air Forecasting Model	Neural networks, sensor fusion	India (Delhi NCR)	72-hour accurate AQI forecasts	CPCB, IITM
Air & Water Quality Monitoring	NOAA Water Drones	ML image classification, drones	USA	Real-time detection of water pollutants	NOAA
Renewable Energy Optimization	Google DeepMind for Wind Power	ML forecasting algorithms	USA, UK	20% increase in wind energy value	Google DeepMind
Renewable	Smart Grid	AI for load	Germany,	Reduced	Siemens,

Energy Optimization	Optimization	forecasting and control	Netherlands	grid losses, better demand-supply match	TenneT
Biodiversity & Deforestation	Global Forest Watch	AI with satellite remote sensing	Amazon, Congo Basin, SE Asia	Monitors 11.1M ha/year of tree cover loss	WRI, Google Earth Engine
Biodiversity & Deforestation	Rainforest Connection (RFCx)	AI sound pattern detection	Brazil, Peru, Indonesia	Real-time illegal logging alerts	RFCx

4. CASE STUDY ANALYSIS

Case Study 1: Google AI's Flood Forecasting System in India and Bangladesh

Background:

Floods represent a major climate disaster which affects many people worldwide. The monsoon floods that occur in India and Bangladesh each year result in millions of people becoming displaced while causing death and destroying agricultural fields and infrastructure.

Problem:

The existing flood prediction technologies had both limited area reaches and poor accuracy results. The available warning systems did not provide specific alerts which prevented people at local levels from taking appropriate actions. People who do not read well and those living in rural areas received few flood warnings or they could not understand them.

AI Solution:

The Indian Central Water Commission partnered with Google to create an artificial intelligence-based flood prediction system. The system combines machine learning algorithms with hydrological modelling and terrain analysis through satellite images and river data and weather prediction information. The system sends personalised alerts via Android smartphones and Google Search and Maps platforms that can be adapted into different regional languages.

Impact:

- By 2023, the systems will cover flood alerts for 360 million people across India and Bangladesh.
- The system distributed in excess of 115 million flood warnings to users during the year 2022.
- The new system provides a 48-hour prediction window that allows communities to either evacuate or prepare for floods.
- The system delivers precise warnings to individuals who reside in danger zones which enhances alert reliability through reduced false alarms.

Data/Results:

Research conducted by Google.org along with Yale University in 2022 showed that AI-powered alerts increased evacuation rates by three times and produced 23% fewer casualties in areas that received alerts compared to areas without them (Google AI, 2023).

Replicability/Scalability:

- The model is designed with the ability to scale for deployment in flood-prone countries which use open hydrological datasets.
- The AI team at Google has already deployed this solution across different parts of Africa as well as Latin America.
- The open availability of their tools combined with their local government partnerships permits universal replication especially for developing nations at risk from climate change.

Case Study 2: Microsoft's AI Sowing App for Climate-Resilient Agriculture in India

Background:

In India, agriculture is primarily climate dependent and more than 50% of the farms rely solely on rain for its agriculture. The unpredictability of the monsoons and climate change has given uncertainty to the traditional agricultural calendar, resulting in losses of crops and income insecurity for smallholder farmers.

Problem:

Farmers had no access to scientific weather data or tailored agricultural advice. Most of them were dependent on traditional knowledge or word-of-mouth and therefore even the timing of the sowing was impacted. This resulted in poor sowing timing, low productivity, and overuse of fertilizers, and irrigation.

AI Solution:

Microsoft and ICRISAT and the government of Andhra Pradesh developed an AI sowing advisory app. Through predictive analytics, the app mixed:

- 30 years of climate and soil data
- Current weather forecasts
- Real-time field data via SMS service

Farmers were sent text messages in their local languages so that they could be told when to sow, what inputs to apply, and how to conserve water.

Impact:

- Through the pilot programs implemented in Andhra Pradesh, farmers gained a 10–30% increase in yields of groundnut and cotton.
- The synchronized planting schedule according to rainfall patterns minimized the chances of crop failure.
- The pilot project included more than 3,000 farmers who intend to expand the program across the entire state.

Data/Results:

The AI sowing app recommendations caused farmers to delay their planting time by seven days before the usual schedule as reported by Microsoft field reports from 2018 thus generating improved crop yields. Timely planting through the app allowed farmers to save money on irrigation expenses and enhanced their ability to combat pests.

Replicability/Scalability:

- The model operates using weather information which is publicly accessible along with simple mobile-based access.
- Other developing countries which share similar Agri-climatic characteristics can easily replicate this model.
- The government of Telangana together with FAO have shown interest to implement the model for different regions.

Table 2: Summary of Key Features

Feature	Flood Forecasting (Google AI)	AI Sowing App (Microsoft)
Target Issue	Monsoon flooding and early evacuation	Climate-resilient agriculture
AI Technology	Machine learning, terrain modelling	Predictive analytics, weather modelling
Scale	360+ million people reached	3,000+ farmers in pilot phase
Measurable Impact	23% reduction in casualties, improved lead times	10–30% increase in yields, lower input costs
Replicability	High – scalable to flood-prone nations	High – usable in other rainfed farming regions
Innovation Highlight	Multilingual, hyperlocal mobile alerts	Tailored, SMS-based advice for non-digital farmers

5. CHALLENGES AND ETHICAL CONCERNs

5.1 Data Privacy and Surveillance Risks

The operational functions of AI systems depend on extensive databases that include satellite information and sensor networks and personal geographical records which create substantial concerns about data security and surveillance practices. AI flood forecasting and air quality applications use personal movement data which threatens privacy because users' locations remain accessible unless the system anonymizes information properly (ITU, 2023). Environmental monitoring tools might be misused by governments or corporations to conduct surveillance activities under sustainable development pretences especially in authoritarian societies.

5.2 Bias in Algorithms and Exclusion Risks

AI models exhibit the same level of bias which exists in the training data. The data sources for climate and environmental models primarily originate from the Global North which results in models that lack complete representation of Global South realities. AI models that learn from Western agricultural datasets generate incorrect predictions about Indian and African crop behaviour (Crawford, 2021). Disadvantaged groups face systemic exclusion

when they lack proper access to climate predictions leading to increased climate injustice (Crawford, 2021).

5.3 High Energy Consumption in AI Training

Massive amounts of processing power are needed to train huge AI models. Over the course of its lifespan, a single large-scale deep learning model (such as BERT or GPT) can produce as much carbon dioxide as five cars (Strubell et al., 2019). There is a paradox in the sustainable deployment of AI since, although it may optimize energy systems, it also increases carbon emissions during development (Strubell et al., 2019).

5.4 Access and Affordability Gaps in Developing Nations

Many developing nations face limitations in both infrastructure resources and computing capabilities and financial support needed for climate-related AI development and deployment. The implementation of projects depends heavily on tech giants Google IBM and Microsoft which results in complete technological dependency. The use of environmental data and decisions by users raises concerns about fairness and national control rights (UNEP, 2022). The AI divide may cause greater inequality between nations because localization and open-source models do not exist (UNEP, 2022).

6. FUTURE PROSPECTS AND POLICY RECOMMENDATIONS

The intensifying climate issues require a responsible approach to use Artificial Intelligence (AI) to speed up environmental sustainability. The future direction for AI integration in climate action needs to focus on ethical and effective approaches particularly for resource-constrained areas. The use of AI technologies provides opportunities to improve resource efficiency which benefits environmental sustainability and economic growth. Through their operations, AI systems help optimize resource consumption which results in better environmental sustainability.

6.1 Open Access to Climate and Environmental Data

One of the crucial enablers stimulating AI innovation is an open and free environment data system. There should be cooperation between governments and international bodies in the generation and maintenance of interoperable, real-time, and free climate datasets, especially in the vulnerable geographic areas. This implies NASA's EarthData and ESA's Copernicus programme are prime models of openly accessible remote sensing data. Expanding such platforms would allow researchers, innovators, and governments from the Global South to build context-specific AI tools without having to rely on expensive private datasets.

Policy action: Setup national and regional AI-data commons under UNFCCC and IPCC to guarantee equitable data access.

6.2 Promoting Public-Private Partnerships in Green AI Innovation

A Naturel Environmental Solutions are generally born of clout of partnerships involving governments, academia, and tech companies. They cite examples of flood forecasting by Google, precision agriculture by Microsoft, all the while gaining local government support and expertise in the field. Furthering multi-stakeholder ecosystems would accelerate innovation and ensure that the technology serves public interest rather than profit.

Policy action: Use climate finance mechanisms, innovation hubs, and AI sustainability accelerators to incentivize green AI collaborations under national innovation policies.

6.3 AI in NDCs and Climate Policies

Despite its growing significance most countries fail to mention artificial intelligence specifically in their NDCs and climate policies. A missed opportunity exists in this current situation. AI should receive official status as a recognized tool for meeting adaptation and mitigation objectives across agricultural and energy and disaster risk reduction sectors.

The implementation of AI integration frameworks for climate planning should be achieved by including them in NDCs and National Adaptation Plans and SDG roadmaps along with specific targets, appropriate funding sources and institutional responsibilities.

6.4 Building Local Capacity for Ethical AI Application in Developing Countries

Capacity is more than just technology. AI usage also requires trained data scientists and digital governance frameworks along with proper infrastructure in addition to ethical application. Countries that wish to use AI in an ethical manner need to provide immediate financial support for developing educational initiatives and digital literacy as well as AI training programs for climate professionals which directly benefit communities.

The proposed policy measures include establishing AI climate academies at regional levels and awarding fellowships to fund grassroots digital innovation labs for democratizing AI skills in environmental problem-solving applications.

7. CONCLUSION

Thus, the present paper will demonstrate with a literature review and some case studies that an AI transformation is taking place, depicting climate change and environmental issues as various angles of a complex dilemma. This would include AI for climate prediction and environmental disaster preparedness; AI for precision agriculture and animal husbandry; and AI for the optimization of power generated from renewable sources. The role of AI exists at the crossroads of reality: it cannot solve a problem on its own but has to work together with good policies and governance that include local knowledge systems.

On the other hand, AI offers a chance for intervention-based systems that could make climate risks more unpredictable and potentially urgent in instances where the need should become greater, with an intervention that should become faster, more precise, and data-driven. Yet, the **ethical risks, data gaps, energy demands, and global inequalities in AI access** must not be ignored. The success of AI in environmental governance hinges on responsible innovation—guided by transparency, fairness, and inclusivity. To truly leverage AI for a sustainable future, global and local actors must invest not just in technology, but in **capacity-building, open data ecosystems, and community-driven implementation**.

Ultimately, AI can be a vital enabler of climate resilience—but only if we ensure it serves all people and the planet, not just powerful institutions or markets.

REFERENCES

1. IPCC. (2023). *Sixth Assessment Synthesis Report*. Intergovernmental Panel on Climate Change. <https://www.ipcc.ch/report/ar6/syr>
2. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. *Nature Communications*, 11(1), 233. <https://doi.org/10.1038/s41467-019-14108-y>

3. World Resources Institute (WRI). (2022). *Global Forest Watch: Monitoring Forests in Near Real-Time*. <https://www.globalforestwatch.org>
4. Central Pollution Control Board (CPCB). (2023). AI-based forecasting of air pollution in Delhi NCR. <http://cpcb.nic.in>
5. DeepMind. (2019). Machine learning can boost value of wind energy. <https://deepmind.com/blog/article/machine-learning-can-boost-value-wind-energy>
6. FAO. (2021). AI in agriculture and food security. <https://www.fao.org/digital-agriculture>
7. Global Forest Watch (GFW). (2023). Annual tree cover loss report. <https://www.globalforestwatch.org>
8. Google AI. (2023). Expanding our flood forecasting coverage. <https://ai.googleblog.com>
9. IBM. (2022). Green Horizon: Smarter cities and environmental intelligence. <https://www.ibm.com/smarterplanet>
10. International Renewable Energy Agency (IRENA). (2020). Artificial Intelligence and renewable energy systems. <https://www.irena.org>
11. Microsoft India. (2018). AI sowing app helps farmers increase yields. <https://news.microsoft.com>
12. National Oceanic and Atmospheric Administration (NOAA). (2022). Monitoring water quality with AI drones. <https://www.noaa.gov>
13. Rainforest Connection (RFCx). (2022). AI listens to the forest. <https://rfcx.org>
14. ITU. (2023). AI and data governance for sustainable development. International Telecommunication Union. <https://www.itu.int>
15. Crawford, K. (2021). *Atlas of AI: Power, politics, and the planetary costs of artificial intelligence*. Yale University Press.
16. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650. <https://doi.org/10.18653/v1/P19-1355>
17. United Nations Environment Programme (UNEP). (2022). *AI for the Planet: Opportunities and challenges*. <https://www.unep.org/resources/report/ai-planet>.