

FROM BOOM TO BUST: A BEHAVIORAL STUDY OF INVESTOR HERDING DURING ECONOMIC TURMOIL

Irrinki Mohan Krishna

Asst Professor, Koneru Lakshmaiah Education Foundation

Ch. Nissy Vennela

BBA, Koneru Lakshmaiah Education Foundation

G N Harshita

BBA, Koneru Lakshmaiah Education Foundation

Lavanya Sindhu

BBA, Koneru Lakshmaiah Education Foundation

Sahasra

BBA, Koneru Lakshmaiah Education Foundation

ABSTRACT

This research explores how investors behave during economic booms and busts, focusing on psychological biases that influence decision-making.¹ By analyzing historical financial data from the 2008 Global

Financial Crisis and the 2020 COVID-19 crash, the study examines the differences between retail and

institutional investors.¹ Key behavioral patterns such as overconfidence, herd mentality, and loss aversion are highlighted.¹ Case studies provide real-world context, and findings offer insights into strategies that can mitigate irrational investment behavior during market turmoil.¹ The study aims to provide a comprehensive understanding of investor psychology, helping investors, policymakers, and financial advisors make informed decisions during volatile periods.¹

Key Words: A Behavioral Study of Investor, Financial Crisis, Key Behavioral patterns such as overconfidence, herd mentality and loss aversion are highlighted.

I. INTRODUCTION: PSYCHOLOGY, MARKET CYCLES, AND THE BEHAVIORAL GAP

1.1. Contextualizing Market Volatility and Investor Behavior

Financial markets are characterized by inherent cyclical behavior, exhibiting rapid periods of expansion, referred to as a "boom," interspersed with sharp periods of contraction, or a "bust"¹. While traditional drivers such as macroeconomic policy, interest rates, and fiscal frameworks significantly influence these cycles, the

Collective psychology of market participants plays an equally essential and often exacerbating role in shaping the resulting market trajectory¹. Investor behavior—specifically patterns in risk perception, decision-making, and responses to profound uncertainty—determines whether volatility is effectively managed or significantly amplified¹.

During periods of market prosperity, investors frequently exhibit excessive optimism, leading to a tendency to overestimate future returns and critically underestimate underlying

risks¹. Conversely, the onset of a market bust typically triggers intense fear, panic selling, and widespread herd behavior, all of which contribute substantially to deepening the market decline¹. Behavioral finance provides the rigorous theoretical framework necessary to understand these non-rational phenomena, detailing how ingrained cognitive biases consistently drive decisions that deviate dramatically from the purely rational expectations assumed by classical finance theory¹.

1.2. The Research Problem: Rationality Failure Under Stress

This study specifically investigates investor behavior during two major, distinct market downturns: the 2008 Global Financial Crisis (GFC) and the 2020 COVID-19 crash¹. These events demonstrate a critical failure of the Efficient Market Hypothesis (EMH), confirming that market movements are heavily

influenced by emotional and behavioral components, rather than solely rational data processing¹. The evidence shows that investors frequently act irrationally, guided by biases such as loss aversion,

overconfidence, and collective herding behavior¹.

The central research problem addressed herein is: Does the market environment fundamentally alter investor behavior, and, critically, do retail and institutional investors respond differentially to systemic and

exogenous shocks¹? The design compares the GFC (a systemic, liquidity-driven crisis rooted in financial structures, affecting the S&P 500) with the COVID-19 crash (an exogenous, health-driven shock, analysis using the NIFTY 50 in India). This comparative scope is vital because the *type* of crisis moderates the

behavioral response and subsequent recovery time. Systemic crises, such as the GFC, tend to induce prolonged fear and distrust, resulting in delayed retail recovery. Conversely, exogenous shocks, when perceived as temporary, allow for quicker institutional intervention and aggressive contrarian buying, contributing to rapid, V-shaped rebounds.

The explicit objectives guiding this investigation are¹:

1. To understand the concept and primary causes of investor herding in financial markets.
2. To examine the distinct impact of economic crises on investor behavior.
3. To analyze herding trends within the Indian stock market (NIFTY 50) during the 2008 crisis and the COVID-19 pandemic.
4. To compare observed Indian investor herding patterns with established global market trends (S&P 500).
5. To provide suggestions, grounded in empirical data, for mitigating the prevalent risks associated with herding behavior.

II. REVIEW OF RELATED LITERATURE AND THEORETICAL FRAMEWORK

2.1. Foundations of Rationality and Behavioral Challenges

The intellectual framework of this study is built upon the tension between the traditional economic assumption of rational markets and empirical behavioral observations. Fama (1970) established the

Efficient Market Hypothesis (EMH), arguing that market prices are fundamentally rational and reflect all available information, implying that behavioral factors should have no sustained impact on returns¹.

However, the occurrence of spectacular asset bubbles and collapses challenged this view. Shiller (2000) introduced the pivotal concept of **Irrational Exuberance**, describing how collective psychology is.

phenomena—specifically overconfidence and herd behavior—can inflate asset bubbles, thereby preceding major market busts¹. Further supporting the role of behavioral factors, Barberis, Shleifer, and Vishnay (1998) introduced a model demonstrating how persistent investor sentiment can cause an asymmetrical market reaction, leading to overreaction to positive information and underreaction to negative information, which systematically amplifies overall market volatility¹.

2.2 Core Psychological Biases Driving Market Turmoil

The failure of investors to maintain strict rationality during stress is directly linked to several key cognitive biases:

2.0.1 Loss Aversion and Prospect Theory

Loss aversion, a central finding of Kahneman and Tversky's (1979) **Prospect Theory**, posits that individuals feel the emotional sting of a loss with significantly greater intensity than the corresponding pleasure derived from an equivalent gain¹. This bias is crucial for explaining crisis behavior; it compels retail investors

toward panic-driven, risk-averse decisions during downturns, motivating irrational liquidation even at

market lows to halt the painful realization of further losses¹. The analysis demonstrates that this bias acts as a primary psychological driver, moving the investor to prioritize the immediate emotional need to stop the loss over long-term financial optimization.

2.1.1. Herd Mentality and Sentiment Dynamics

Herd mentality occurs when market participants choose to follow the perceived actions of a majority, overriding their own independent analysis or private knowledge [1, 2]. Empirical literature consistently

shows that herding behavior intensifies during market turbulence, particularly when confronted with large market movements or severe geo-political shocks [3].

When loss aversion triggers an initial, emotionally charged sell-off, observing widespread panic among

peers provide external validation, intensifying internal fear and creating a potent positive feedback loop. This collective action transforms normal market correction into an accelerated panic, acting as a behavioral crisis multiplier. Baker and Wurgler (2007) confirmed that high investor sentiment during market booms

leads to consistent overpricing, while overwhelmingly negative sentiment during downturns results in underpricing cyclical irrationality that institutional investors are equipped to exploit¹.

2.2. Herding Dynamics and Adaptive Behavior

Further contributing to irrational behavior is **Mental Accounting** (Thaler, 1999), which explains how investors subjectively segment their wealth, leading to inconsistent and often irrational portfolio choices when faced with market turbulence¹.

However, the observed divergence in performance suggests a more nuanced reality, aligning with Lo's (2004) **Adaptive Markets Hypothesis (AMH)**. The AMH posits that investor behavior is neither purely

rational nor wholly irrational but adapts dynamically based on market experience and learned lessons¹. The subsequent empirical data, demonstrating the superior market timing of institutional investors who "buy the dip" at prices (such as the NIFTY 50 at 8,597 in March 2020) that do not reflect true intrinsic value, confirms the existence of actionable sentiment-driven mispricing. This superior, disciplined performance by institutional players represents an evolutionary success within the adaptive framework, differentiating them sharply from the bias-constrained retail investor.

III. METHODOLOGY AND HYPOTHESIS DEVELOPMENT

3.1. Research Design and Data Sources

The study employs a comparative, mixed-method research design, integrating rigorous quantitative analysis of historical market data with descriptive qualitative evidence derived from investor case studies¹.

3.1.1. Quantitative Data Sources

Quantitative analysis was conducted using monthly closing prices and percentage changes for two representative indices¹:

- **S&P 500 Index (2007–2009):** Selected to quantify the prolonged severity and systemic nature of the Global Financial Crisis.
- **NIFTY 50 Index (2019–2021):** Selected to quantify the acute shock, volatility, and subsequent recovery trends specific to the emerging Indian market's reaction to the COVID-19 pandemic.

3.1.2. Qualitative Data and Analytical Approach

Qualitative evaluation utilized secondary documentation, including investor behavior reports published by regulatory bodies (SEBI, RBI) and international financial institutions (IMF, World Bank)¹. Two focused case studies—constructed to proxy typical retail and institutional behaviors—were used to illustrate real-world decision-making under stress. Analytical techniques included trend visualization, calculation of comparative percentage changes, and sentiment analysis inferred from market reports to gauge risk-taking shifts, panic selling incidents, and changes in asset allocation¹.

3.2. Variables and Theoretical Basis

The study investigates the relationship between market conditions and investor response, recognizing investor type as a modifying factor¹:

- **Independent Variable:** Market Condition (delineated into Boom vs. Bust phases).
- **Dependent Variable:** Investor Behavior (measured by deviations from pre-crisis asset allocation and portfolio recovery speed).
- **Moderating Variable:** Investor Type (Retail vs. Institutional).

The theoretical underpinning of the expected outcomes is **Prospect Theory**, which posits that the heavier weighting of realized losses dictates panic-driven portfolio liquidation among risk-averse investors during downturns¹.

3.3. Formulation and Testing of Hypotheses

The empirical analysis is designed to test the following hypotheses¹:

- **Null Hypothesis (H0):** Investor behavior is not significantly influenced by market conditions; both retail and institutional investors act rationally and consistently across boom-and-bust phases.
- **Alternative Hypothesis (H1):** Investor behavior is significantly influenced by market conditions. Retail investors are more prone to panic selling, herding, and loss aversion during downturns, whereas institutional investors demonstrate greater resilience through portfolio rebalancing and contrarian strategies.

It is acknowledged that the reliance on historical, secondary index data and the limit of covering only two major crises define the boundaries of external validity. The conclusions are framed as strong supportive evidence for behavioral theories within these specific contexts (systemic vs. exogenous shock in developed vs. emerging markets)¹.

IV. EMPIRICAL RESULTS: QUANTITATIVE ANALYSIS OF MARKET TURMOIL

This section presents the historical data quantifying the severity and duration of the two crises, establishing the empirical foundation for testing the hypotheses.

4.1. The 2008 Global Financial Crisis (S&P 500)

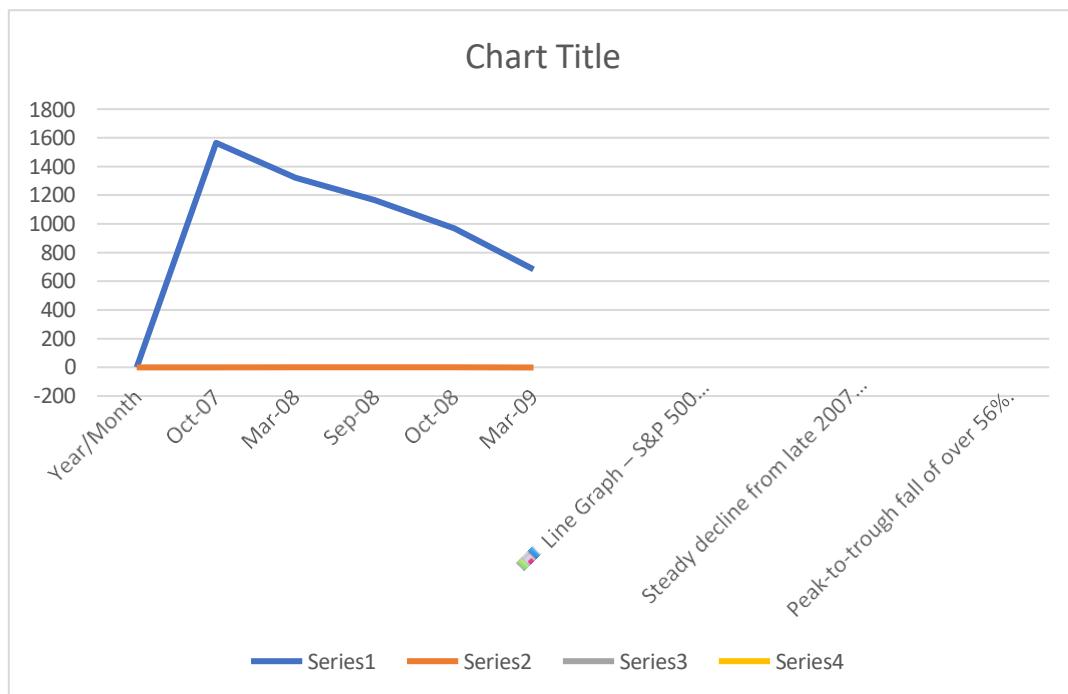

The S&P 500 Index data highlight the prolonged, severe market turmoil characteristic of the GFC, which required substantial psychological fortitude to navigate¹.

Table 1: S&P 500 Index Performance During the 2008 Global Financial Crisis (2007–2009)

Year/Month	S&P 500 Closing Value	% Change
Oct 2007	1,565	—
Mar 2008	1,322	-15.5%
Sep 2008	1,166	-11.8%
Oct 2008	968	-17.0%
Mar 2009	683	-29.4%

The data reveals that the crisis accelerated severely following the Lehman Brothers collapse. October 2008 experienced the sharpest decline in this period, dropping 17.0%¹. The data shows a massive cumulative drop of approximately 56.4% from the October 2007 peak (1,565) to March 2009 trough (683)¹. This sustained period of decline, spanning over a year, created an environment that maximally induced loss

aversion and panic behavior among vulnerable investors, eroding long-term trust and necessitating profound behavioral adjustments.

4.2. The 2020 COVID-19 Crash (NIFTY 50)

The NIFTY 50 Index analysis details a massive, concentrated exogenous shock followed by a distinctly resilient recovery in the Indian market ¹.

Table 2: NIFTY 50 Index Performance During the 2020 COVID-19 Crash (2019–2021)

Year/Month	NIFTY 50 Closing Value	% Change (Monthly)
Dec 2019	12,182	—
Feb 2020	11,201	-8.0%
Mar 2020	8,597	-23.2%
Jun 2020	10,302	+19.8%
Dec 2020	13,981	+35.6%
Mar 2021	14,690	+5.1%

The impact of the COVID-19 nationwide lockdowns resulted in an acute, single-month drop of 23.2% in March 2020, immediately triggering intense retail panic selling ¹. Crucially, this sharp trauma was followed by an exceptionally swift rebound. The market recovered by a staggering 35.6% by December 2020 (relatively to the March low), reaching new all-time highs within nine months ¹. This rapid V-shaped recovery is quantitative proof that sophisticated market participants (institutional investors) were able to effectively employ contrarian strategies, utilizing the low prices of March 2020 as strategic entry points to capture the subsequent rally. This proves that efficient information processing regarding the temporary nature of the exogenous shock allowed adaptive market players to capitalize on volatility.

V. DISCUSSION: THE INVESTOR BEHAVIOR CONTINUUM

This chapter integrates the quantitative market observations with the qualitative evidence from the case studies to definitively assess the investor behavior continuum and confirm the Alternative Hypothesis () .

5.1. Qualitative Analysis of Decision Architectures (Case Studies)

The qualitative data provides necessary granularity regarding the emotional and cognitive drivers behind the financial outcomes ¹ .

5.1.1. Retail Investor Profile and Biases

The retail investor profile, evidenced in the 2008 case study, exhibited initial overconfidence during the boom phase, leading to an underestimation of risk. When the bust hit, the reaction was driven by a trio of destabilizing biases: **loss aversion**, prompting sales even at realized losses to stop the immediate pain.

Recency bias, leading to an overweighting of short-term negative trends; and **herding behavior**, wherein the investor followed the crowd and amplified the market's downward spiral ¹ . The financial outcome was a substantial and protracted loss of wealth, leading to a delayed recovery and a structural decrease in trust regarding equity investments ¹ .

5.1.2. Institutional Investor Profile and Strategy

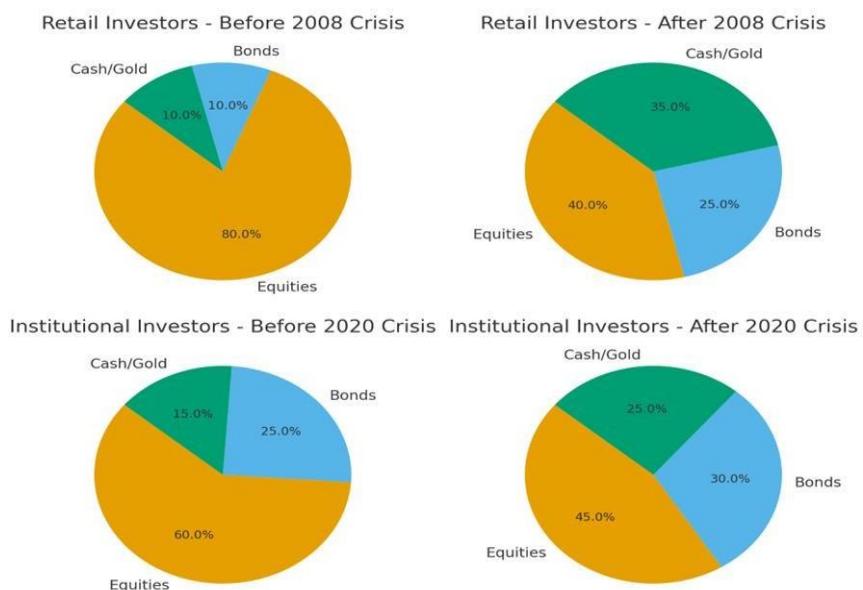
The institutional response in the 2020 crash demonstrated highly disciplined behavior. Decisions were rooted in **analytical decision-making**, prioritizing predictive models and market data over emotional reaction ¹ . When the NIFTY 50 plunged, institutions executed planned **portfolio rebalancing**, shifting temporarily into defensive hedges like gold and bonds, while simultaneously applying a **contrarian**

strategy by identifying and buying quality undervalued assets ¹ . The result was a successful mitigation of overall portfolio decline and a quick recovery, maximizing returns derived from market volatility ¹ .

5.2. Comparative Behavioral Response and Financial Impact

The comparative analysis decisively confirms that investor type moderates the behavioural response to market turmoil. Institutional discipline proved superior in navigating high-stress environments.

Table 3: Comparative Behavioral Response Across Crises (Retail vs. Institutional Investors)


Aspect	Retail Investors (2008 & 2020)	Institutional Investors (2008 & 2020)
Decision Style	Emotional, panic-driven	Rational, data-driven
Risk Management	Weak (panic selling at lows)	Strong (hedging, rebalancing based on models)
Market Timing	Poor (sold at lows)	Better (bought undervalued assets)
Recovery Speed	Slow, cash hoarding losses recovery benefit	Faster, proactive reinvestment
Behavioral Bias	Herding, Loss Aversion, Recency Bias	Disciplined, Contrarian strategies

The observation of portfolio shifts quantifies the financial penalty incurred by retail behavioral bias.

Following the 2008 GFC, retail investors significantly de-risked by moving heavily into cash (increasing cash holdings by 25 percentage points) while locking in losses by substantially reducing equity exposure¹.

This *cash hoarding*, driven by the emotional imperative of loss aversion, directly resulted in their missing immense recovery rally, leading to a slower overall wealth recovery.

Conversely, the institutional investors' **dynamic rebalancing** in 2020—reducing initial equity exposure but maintaining strategic exposure to alternatives—allowed them to position themselves to buy volatility¹.

Their ability to time the market better, leveraging advanced quantitative models to detach decisions from emotion, highlights the financial advantages available to disciplined, adaptive market participants. The opportunity cost borne by the retail cohort for satisfying the

emotional need to stop the immediate loss constitutes the quantifiable financial consequence of herding and loss aversion.

VI. CONCLUSION, IMPLICATIONS, AND MITIGATION STRATEGIES

6.1. Synthesis of Key Findings and Theoretical Confirmation

The analysis confirms the Alternative Hypothesis (): investor behavior is significant and differentially influenced by crisis conditions. Retail investor behavior, driven primarily by emotional biases such as loss aversion and herd mentality, consistently amplified market downturns by prompting panic

selling at the worst possible moments ¹. Institutional investors, protected by rigorous strategy, data-driven discipline, and sophisticated risk management tools, demonstrated resilience, relying on proactive asset allocation shifts and contrarian purchasing to mitigate losses and achieve faster recovery ¹.

The primary tools for achieving this resilience were proven to be strategic diversification across asset classes (equities, bonds, and alternatives) and strict adherence to a long-term plan ¹. The findings underscore that

Behavioral dynamics represent a persistent systemic threat to market stability, particularly when mass retail participation is involved, necessitating regulatory and educational interventions.

6.2. Policy and Financial Education Implications

The persistent display of irrationality among retail investors during crises implies a systemic gap in financial resilience training. Policymakers and regulatory bodies (e.g., SEBI) must acknowledge that psychological

biases, not just macroeconomic factors, are significant market risk drivers. There is a critical need for

financial literacy programs that are specifically designed to address and counteract cognitive biases like loss aversion and herding, moving beyond mere product explanation to focus on behavioral discipline.

Recommendations for Mitigating Herding Risk (Actionable Strategies)

Based on empirical evidence and established behavioral principles, the following actionable strategies are recommended to mitigate the risks associated with herding behavior [1, 4]:

1. **Enforce Diligence and Independent Research:** Investors must be formally educated and motivated to base all investment decisions on thorough fundamental research, independent of prevailing market sentiment or "noise" [4]. This institutionalization of diligence serves as the primary barrier against the formation of herd behavior.
2. **Mandate and Encourage Diversification:** Regulatory bodies should continue to strongly promote, and potentially mandate minimum standards for, diversification across non-correlated asset classes (equities, debt, gold/alternatives) ¹. Diversification reduces the concentration of losses, thereby diminishing the emotional trigger point for loss aversion.

3. **Implement Rules-Based, Long-Term Investing:** Retail investors must commit to and rigidly follow a predefined, long-term investment plan, ideally utilizing systematic investment instruments (SIPs) [4]. Automated buying during downturns forces the retail portfolio to adopt a contrarian strategy, capitalizing on low valuations and preventing the self-inflicted damage caused by emotional market timing.
4. **Introduce Behavioral Circuit-Breakers:** Financial platforms should implement technology-driven behavioral nudges, such as mandatory time delays or cooling-off periods for panic sell orders that are placed following sharp, defined market index declines (e.g., the 17.0% monthly drop observed in 2008 GFC)¹. This intervention provides a necessary cognitive buffer against immediate emotional decisions.
5. **Promote Professional Financial Counselling:** Encouraging retail investors to seek guidance from licensed financial advisors, particularly during periods of acute volatility, provides an external emotional check [4]. A professional advisor ensures the investor adheres to their rational, long-term plan, mitigating the tendency to act impulsively based on short-term market movements.

6.3. Future Research Directions

Future research should focus on obtaining high-frequency data to quantitatively measure the intensity and duration of herding behavior and loss aversion in real-time trading environments. Furthermore, expanding this comparative framework to include regulatory analyses across a greater diversity of emerging markets would provide valuable insights into the optimal regulatory mechanisms for fostering investor behavioural resilience.

REFERENCES

1. Baker, H. K., & Ricciardi, V. (2014, April). *How biases affect investor's behavior*. The European Financial Review.¹
2. Baker, M., & Wurgler, J. (2007, June). *Investor sentiment in the stock market*. Journal of Economic Perspectives, 21(2), 129–151.¹
3. Barberis, N., Shleifer, A., & Vishnay, R. (1998, March). *A model of investor sentiment*. Journal of Financial Economics, 49(3), 307–343.¹
4. Da, Z., Engelberg, J., & Gao, P. (2011, November). *In search of attention*. Journal of Finance, 66(5), 1461–1499.¹
5. Fama, E. F. (1970, June). *Efficient capital markets: A review of theory and empirical work*. Journal of Finance, 25(2), 383–417.¹
6. Kahneman, D., & Tversky, A. (1979, October). *Prospect theory: An analysis of decisions under risk*.
7. Econometrical, 47(2), 263–291.¹
8. Nofsinger, J. R. (2017, May). *The psychology of investing (6th ed.)*. Pearson Education.¹

9. OECD. (2023, May). *Investor resilience and behavioral trends are post-pandemic*. OECD Financial Studies Division.¹
10. Rashid, M., & Saeed, S. (2020, July). *Impact of COVID-19 on investor behavior: Evidence from emerging markets*. Asian Journal of Economics and Finance, 2(3), 15–29.¹
11. SEBI. (2021, December). *Retail investor behavior during market volatility*. Securities and Exchange Board of India.¹
12. Shiller, R. J. (2000, February). *Irrational exuberance*. Princeton University Press.¹
13. Shiller, R. J. (2015, March). *Speculative bubbles and market volatility*. American Economic Review, 105(3), 75–92.¹
14. Statman, M. (2015, August). *Finance for normal people: How investors and markets behave*. Oxford University Press.¹
15. Thaler, R. H. (1999, December). *Mental accounting matters*. Journal of Behavioural Decision Making, 12(3), 183–206.¹
16. World Bank. (2024, June). *Global economic prospects: Market uncertainty and investor reactions*. World Bank Publications.¹